If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2+79x-48=0
a = 21; b = 79; c = -48;
Δ = b2-4ac
Δ = 792-4·21·(-48)
Δ = 10273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(79)-\sqrt{10273}}{2*21}=\frac{-79-\sqrt{10273}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(79)+\sqrt{10273}}{2*21}=\frac{-79+\sqrt{10273}}{42} $
| 4(x-1)=6+3x | | 4x-13/7-1/10=3x-5 | | (2x+1)-3(x-2)=x+6 | | 3(x-5)=2(x+2)+5x-11 | | -3(c+-5)-4c=60 | | -3n+12n-2n=210 | | 10-4(2w+1)=6w-4(6 | | 30r+5r(1.4)=436.60 | | F(x)=|x+3|-6 | | 32=25+u | | w-8w=-7 | | w-42=11 | | 8x-80=10x-30 | | 2(x^2-2x-66)=0 | | 5-6y+9y=-15-5 | | 3w+6/3=9w+3 | | 2x^2-2x-66=0 | | v-23=7 | | 2(x-5)+4=4(x+3) | | 4/y-5=18/y | | 1n/9-5n/18=1/9 | | x-3((x-3)+(x+1))=6(6+15) | | n/16-5n/2=7/16 | | x=√20-x | | 5-z÷2=6z | | 10÷2x=6 | | 3(4n+5)=87 | | 18-4(2x-1)=8-x | | 7x+5(-6x-21)=171 | | 5(2x+3)+4=39 | | 2x+15=7x-35 | | 10x-5+11+6x=160 |